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Microgrids are promising in reducing energy consumption and carbon emissions, compared with the cur-
rent centralised energy generation systems. Smart homes are becoming popular for their lower energy
cost and provision of comfort. Flexible energy-consuming household tasks can be scheduled co-
ordinately among multiple smart homes to reduce economic cost and CO2. However, the electricity tariff
is not always positively correlated with CO2 intensity. In this work, a mixed integer linear programming
(MILP) model is proposed to schedule the energy consumption within smart homes using a microgrid
system. The daily power consumption tasks are scheduled by coupling environmental and economic sus-
tainability in a multi-objective optimisation with e-constraint method. The two conflicting objectives are
to minimise the daily energy cost and CO2 emissions. Distributed energy resources (DER) operation and
electricity-consumption household tasks are scheduled based on electricity tariff, CO2 intensity and
electricity task time window. The proposed model is implemented on a smart building of 30 homes under
three different price schemes. Electricity tariff and CO2 intensity profiles of the UK are employed for
the case study. The Pareto curves for cost and CO2 emissions present the trade-off between the two
conflicting objectives.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to fossil fuels depletion and global warming, energy cost
and pollution reduction are two worldwide popular issues [1].
The UK Climate Change Programming, for example, aims to cut
down 80% of carbon emissions by 2050 based on Climate
Change Act 2008 [2]. In particular, in UK the energy sector is
responsible of the highest amount of greenhouse gases to the
atmosphere (i.e. 30%) [3]. At present, electrical supply systems
are mainly based on relatively few large plants using conventional
fossil fuels and operating in central locations. The power is then
distributed to the final user via distribution and transmission net-
works. Centralised systems show overall energy losses of 65% or
more, including losses during electricity generation, transmission
and distribution [4]. Microgrid systems are regarded as an alterna-
tive to the current centralised energy generation systems, because
they can provide economic benefits through avoiding long-
distance transmission. Moreover, environmental benefits can be
obtained by utilising distributed energy resources (DER) in combi-
nation with microgrids, allowing generation of lower amount of
pollutants [5]. Besides renewable energy resources, combined heat
and power (CHP) generators are utilised in microgrids because of
their high efficiency resulting from using the waste heat for ther-
mal energy production. The implementation of micro CHP systems
in the UK might reduce emissions of CO2 by up to 2.1 tons per year
per household, compared to condensing boilers and electricity
drawn from the grid as reported by the Department of Energy
and Climate Change (DECC) [6]. Meanwhile, security and reliability
can be gained from interconnection and coordinated control.

Within smart grids, the interactive relationship among the grid
operators, utilities and smart homes is the key element that allows
smart grid technologies to function together. Energy management
of buildings could play an important role in reducing both energy
cost and air pollution, since 30–40% of the world’s primary energy
is consumed in buildings [7]. Within this context, smart homes are
seen as a promising solution because of the rapid advances in com-
puting and communication capabilities which can promote the
concept further [8]. When smart homes are connected to smart
grids, detailed pricing schemes enable customers to schedule their
home appliance operations in order to save energy, reduce cost or
help grid operations [1,9]. Moreover, energy consumption can be
reduced by 10–30% by changing the customers’ living behaviour
through a demand-side management approach aimed at matching
generation values with demand, by controlling the operation of
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Nomenclature

i tasks
j homes in the smart building
t time interval
h task operation period

Parameters
bt electricity price at time t (£/kW he)
Cih power consumption capacity of task i at operation

period h (kWe)
CB boiler capacity (kWth)
CCHP CHP generator capacity (kWe)
CE electrical storage capacity (kW he)
CTH thermal storage capacity (kW hth)
DE electrical storage discharge limit (kWe)
DTH thermal storage discharge limit (kWth)
GE electrical storage charge limit (kWe)
GTH thermal storage charge limit (kWth)
Ht heat demand at time t (kWth)
Pji processing time of home j task i
p difference between peak and base electricity demand

price from grid (£/kW he)
q charge of the maximum of power demand from the grid

(£/kWe)
r price of natural gas (£/kW h)
TS
ji earliest starting time of home j task i

TF
ji latest finishing time of home j task i
a CHP heat-to-power ratio
d time interval duration (h)
lE cost per unit input (maintenance) for electrical storage

unit (£/kW he)
lTH cost per unit input (maintenance) for thermal storage

unit (£/kW hth)

gB boiler efficiency
gCHP CHP generator electrical efficiency
gE electrical storage charge/discharge efficiency
gTH thermal storage charge/discharge efficiency
nB CO2 intensity of boiler thermal output (kg CO2/kW hth)
nCHP CO2 intensity of CHP electrical output (kg CO2/kW he)
nGt CO2 intensity of grid electricity at time t (kg CO2/kW he)
j agreed electricity peak demand threshold from grid

(kWe)

Variables
ft thermal storage discharge rate at time t (kWth)
gt thermal storage charge rate at time t (kWth)
It electricity imported from the grid at time t (kWe)
Imax maximum power demand from the grid (kWe)
Rt electricity exported to the grid at time t (kWe)

SIE initial state of electrical storage (kW he)
SITH initial state of thermal storage (kW hth)
SEt electricity in storage at time t (kW he)

STHt heat in storage at time t (kW hth)
ut electricity output from CHP generator at time t (kWe)
xt heat output from boiler at time t (kWth)
yt electrical storage discharge rate at time t (kWe)
zt electrical storage charge rate at time t (kWe)
ct extra electricity load from grid over the agreed thresh-

old j at time t (kWe)
/1 daily electricity cost of a home (£)
/2 daily CO2 emissions (kg CO2)

Binary variables
Ejit 1 if home j task i is done at time t, 0 otherwise
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appliances from the customer side [10]. Various dynamic pricing
schemes for residential customers, such as real time pricing
(RTP), time-of-use (TOU), critical peak pricing (CPP) and critical
peak rebate (CPR), are being designed to reduce the electricity
demand at peak periods through the consumers’ response by
changing their behaviour [11]. DECC reviewed 30 trials of demand
side response (DSR) in the domestic sector under TOU, CPP and CPR
in seven countries, including the USA, the UK, Canada, Australia,
Ireland, France and Norway, it concluded that the consumers do
shift electricity demand in response to economic incentives.

Energy management in smart homes has been investigated in
quite a few recent journal publications. Equipment operations
are scheduled based on a given energy profile to obtain minimum
operation costs in [12–15]. Logenthiran et al. present a multi-agent
system for energy resource scheduling of power system with DERs,
and there are three stages for the algorithm behind the system
[12]. It targets scheduling each microgrid individually to satisfy
its total demand. A dynamic model is proposed for the energy
management of a household through a Model Predictive Control
(MPC) by Dagdougui et al. [13], which integrates different renew-
able energy sources and a storage device to fulfil the energy
demands of a building. A mixed integer linear programming (MILP)
model is developed in [14] for scheduling in microgrids connected
to the national grid by incorporating various realistic features. The
profit is maximised by maintaining diversity in the production of
electricity and scheduling the electricity production, storage and
purchase from and sale of electricity to the national grid. Mohamed
and Koivo [15] propose a Genetic Algorithm (GA) approach to
determine the optimal operating strategy and cost minimisation
scheme for a microgrid for residential application.

Energy management involving energy tasks scheduling has also
been studied besides the energy resources scheduling mentioned
above. In [16], daily deferrable and non-deferrable tasks are sched-
uled for a typical house with a PV generation and a battery storage
within the operation of an electrical demand-side management to
improve the energy behaviour with regard to a standard user beha-
viour. Tascikaraoglu et al. [9] proposed a demand side manage-
ment strategy based on forecasting residential renewable
sources. In-home energy management, appliances control and
power flow are investigated. In the work of Kriett and Salani
[17], the operating cost of both electrical and thermal supply and
demand is minimised in a residential microgrid with a generic
MILP model. An MPC scheme is proposed to iteratively produce a
control sequence. Caprino et al. [18] presented an approach to
schedule the household appliances to limit the peak load of power
usage. The appliance loads are classified into time-triggered and
event-triggered loads and the physical model of these loads are
considered in the model, such as a refrigerator and a washing
machine. A demand response management application with RTP
is proposed to determine the optimal operation of the residential
appliances of a single house in the next 5-min time interval while
considering future electricity price uncertainties [19]. The opera-
tions of the appliances are classified into flexible/non-flexible
and interruptible/non-interruptible tasks. It compares the stochas-
tic optimisation and robust optimisation approaches for the
scheduling of the tasks. Baraka et al. [20] design and implement
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a remotely controlled and energy efficient smart home and they
present a heuristic scheduling algorithm for the resource-
constraint-scheduling problem using Android tablet as user inter-
face. The tasks to be scheduled are assigned with priority numbers
and they are scheduled based on the overall cost limit and power
usage limit in any time slot. Rastegar et al. [21] present an optimal
and automatic residential load commitment framework, which
minimises household payment by determining on/off status of
flexible appliances and operation of battery storage and plug-in
hybrid electric vehicles. The TOU electricity tariff at three levels
is considered in this work. Another appliance scheduling work
for a single house is proposed by Adika and Wang [22], where
the electrical appliances are clustered based on their time of use
probabilities. The aggregate loads of the appliances with similar
schedules are tracked for different time periods which have certain
power limits. Derin and Ferrante [23] develop a model that consid-
ers domestic energy consumption tasks scheduling, where the
operation time of electric vehicle batteries, a dishwasher and a
washing machine is scheduled. For only those three tasks in a time
span of 7 h, the exhaustive search takes 35 min which is relative
slow. The computation time has been reduced to be within seconds
in our previous work [24,25], in which we consider a group of
smart homes with a common microgrid and 12 domestic tasks of
each home are available to be scheduled. DER operation and
electricity-consumption household appliances are scheduled based
on RTP and domestic electrical task time window. Total operation
cost of the smart homes is minimised in [24], while fair cost distri-
bution among smart homes is proposed in [25].

However, only economic aspects are considered in all of the
works mentioned above. Within the environmental context,
demand side management of a domestic dishwasher is investi-
gated by Finn et al. [26] according to renewable energy generation
and pricing signals. Three optimisation objectives are examined:
cost minimisation, demand on wind generation maximisation
and associated carbon emissions minimisation. However, these
are optimised separately. In [27], good cycles and battery electric
vehicles are scheduled and the impact of introducing flexibility
on the demand side is investigated. A household behaviour simula-
tion model is developed to investigate the joint influence of price
and CO2 signals in a demand response programme using a
weighted sum approach [28]. Plant operation, system reliability,
emissions and costs are addressed individually. Environmental
and economic reasons are both considered in the work of Cheong
et al. [29], where optimal household appliances scheduling is pro-
posed for one home.

The literature review reported above demonstrates that
whereas a wealth of academic studies have been undertaken on
smart homes and microgrid systems, the majority deal with one
problem at a time, which is either the optimisation of the CO2

emissions or the optimisation of the costs. Flexible energy-
consuming household tasks and DERs operation can be scheduled
co-ordinately among multiple homes which share a common
microgrid, in order to achieve the desired reduction of both eco-
nomic costs and CO2 impact. However, the electricity tariff is not
always positively correlated with CO2 intensity and they may con-
flict with each other. In this work, an MILP model is proposed to
schedule DER operations and the energy consumption of smart
homes within a common microgrid. It extends the work presented
in [24], where smart homes electric tasks scheduling is provided by
only minimising the total energy cost while CO2 emissions are not
considered. The daily power consumption tasks are scheduled in
this work by coupling environmental and economic sustainability
in a multi-objective optimisation with the e-constraint method.
The two conflict objectives are to minimise the daily energy cost
and CO2 emissions. DER operation and electricity-consumption
household tasks are scheduled based on electricity pricing, CO2

intensity and the electricity task time window. Moreover, the
effects on the optimal solution of different price schemes for pur-
chasing the electricity from the grid are evaluated. The proposed
model is implemented on a smart building of 30 homes under
three different price schemes. Electricity tariff and CO2 intensity
profiles of the UK are employed for the case study. The Pareto
curves for cost and CO2 emissions present the trade-off between
the two conflicting objectives for the three price schemes. The
results indicate the possibility of cost savings and emissions’
reduction through the daily power consumption tasks scheduling
and better management of DER operations.

The remainder of this paper is organised as follows: in Section 2,
the problem is described briefly with relevant assumptions, con-
straints and objective functions. In Section 3, the mathematical
programming model is provided. In Section 4, the proposed model
is applied to a case study with electricity tariff and CO2 emission
intensity profiles of the UK. The computational results are pre-
sented and discussed in Section 5. Finally, concluding remarks
are given in Section 6.

2. Problem description

In this paper, multiple smart homes in a smart building are con-
sidered, where a microgrid system is available as local energy pro-
vider as shown in Fig. 1. All the DERs of the microgrid are shared
among all smart homes; they include a CHP generator, a boiler, a
thermal and/or an electrical storage. The microgrid is connected
to the conventional grid so that the full electricity demand can
be fulfilled by the conventional grid when the electricity produced
by the DERs is insufficient. The electricity generated by the micro-
grid cannot be sold back to the grid. Each smart home follows its
own energy demand curve, depending on the household types,
available electrical appliances and living habits. The total electric-
ity demand of the smart building depends on the daily flexible and
inflexible domestic appliance tasks in the 30 smart homes. Typical
flexible tasks include dishwasher, washing machine and spin dryer
while fridge and light are considered as inflexible tasks. The total
electricity demand of the smart building depends on the operation
time of the domestic appliances, flexible and inflexible tasks. The
total heat demand of the whole building is assumed to be provided.
Similar to [24,25], the equipment capacities are all assumed; no
capital costs are included, only operation and maintenance costs
are considered. It is assumed that electricity RTP and CO2 intensity
are forecasted one day in advance; peak demand charge for the
electricity used from the grid is also given. A multi-objective MILP
approach is developed in this study to minimise the total economic
cost and CO2 emissions. The trade-off between the economic and
environmental objectives is then analysed with a set of Pareto-
optimal solutions. Moreover, three price schemes are investigated,
i.e. RTP, CPP with peak demand charge price scheme, and CPP with
demand charge price scheme:

1. RTP, real-time price is applied.
2. CPP with peak demand charge price scheme is adapted from

Ontario Energy, Canada [30], in which an agreed power demand
threshold (kW) is defined. If the power demand at any time per-
iod is over the threshold, an extra tariff is charged over the
amount of electricity (kW h), besides the real-time price.

3. CPP with demand charge price scheme is adopted from Nation
Grid, US [31], where the bill includes both charges for consump-
tion and demand. The consumption charge is charged based on
the total energy consumption in kW h while the demand charge
is charged to the highest average power demand in kW
measured in a given time interval during the billing period.



Fig. 1. Example of a smart building.
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The overall problem can be stated as follows:

Given are (a) a time horizon split into a number of equal inter-
vals, (b) heat demand of the whole building, (c) equipment
capacities, (d) efficiencies of technologies, (e) maintenance cost
of all equipment, (f) heat-to-power ratio of CHP generator, (g)
charge and discharge limit rates for thermal/electrical storage,
(h) gas price, real-time electricity prices from grid and peak
demand charge price for the over-threshold amount, (i) peak
demand threshold from grid, (j) demand charge based on the
maximum power demand from the grid, (k) CO2 emission
intensity, (l) earliest starting and latest finishing times, (m) task
capacity profiles, and (m) task duration.
Determine (a) energy production plan, (b) task starting time, (c)
thermal/electrical storage plan, and (d) electricity bought from
grid.
So as to (a) find the optimum energy consumption scheduling
and DER operation with minimum economic cost and environ-
mental impact and to (b) fulfil the energy demand (both heat
and electricity) of the smart homes using a microgrid.

3. Mathematical formulation

The energy consumption management problem is formed as an
MILP model which addresses the economic and environmental
sustainability in a multi-objective optimisation model. The daily
power consumption tasks are scheduled based on their given
operation time window (between earliest starting time and latest
ending time) and daily electricity price and CO2 emissions intensity
profiles. The objective is to minimise the daily power cost and CO2

emissions and shave the power consumption peak. The economic
cost and CO2 emissions are minimised subject to relevant con-
straints, including equipment capacity constraints, energy demand
constraints and electrical/thermal storage constraints.

The constraints imposed on the optimisation are:

3.1. Capacity constraints

The output from each equipment should be limited within its
designed capacity.

CHP generator:

ut 6 CCHP 8t ð1Þ
Boiler:

xt 6 CB 8t ð2Þ
Electrical storage:

SEt 6 CE 8t ð3Þ
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Thermal storage:
STHt 6 CTH 8t ð4Þ
3.2. Energy storage constraints

Electricity stored at time t is equal to the amount stored at t � 1
plus the electricity charged minus the electricity discharged. Elec-
tricity loss during the charging and discharging process is counted
by gE (turn around efficiency of electrical storage); for example, if
during any period d, only gEdzt will be charged while the rest is lost.
On the other hand, during the discharging process, in order to sup-
ply dyt to the customer, dyt/gE of electricity is required.

SEt ¼ SEt�1 þ gEdzt � dyt=gE 8t ð5Þ
It is assumed that no daily electricity accumulation is allowed.

At the end of each day (the last time interval T), the electrical stor-
age must return to its initial storage state.

SE0 ¼ SET ¼ SIE ð6Þ
The rates of discharge or charge of the electricity are assumed to

be within the electrical storage discharge and charge limits,
according to its own designed capacity:

yt 6 DE 8t ð7Þ

zt 6 GE 8t ð8Þ
Heat stored in the thermal storage at time t is equal to the

amount stored at t � 1 plus the heat charged minus the heat dis-
charged. The heat loss during the heat storage process is repre-
sented in the same way as shown for the electrical storage.
Stored heat must return to the initial state at the end of each
day, no heat is accumulated over one day.

STHt ¼ STHt�1 þ dgTHgt � d=gTHf t 8t ð9Þ

STH0 ¼ STHT ¼ SITH ð10Þ
The rates of discharge and charge of heat cannot exceed the

thermal storage discharge and charge limits based on the designed
capacity:

f t 6 DTH 8t ð11Þ

gt 6 GTH 8t ð12Þ
3.3. Energy balances

The electricity demand is fulfilled by the electricity generated
by the CHP generator, the electricity received from the electrical
storage and the grid minus the electricity sent to the electrical
storage.

X

j

X

i

XPji�1

h¼0

CihEji;t�h ¼ ut þ yt � zt þ It 8t ð13Þ

The heat demand is fulfilled by the heat generated from the CHP
generator, the boiler, the heat received from the thermal storage
minus heat sent to the thermal storage.

Ht ¼ aut þ xt þ f t � gt 8t ð14Þ
3.4. Starting time and finishing time

The operation of each task must start after the given earliest
starting time and finish before the latest ending time. The binary
variable Ejit indicates ‘‘task i from home j that is done at time t”.
Hence, each task from each home, done between the earliest start-
ing time and the latest finishing time minus the task processing
time, has to be started within this predetermined time window.
X

t

Ejit ¼ 1 8j; i; TS
ji 6 t 6 TF

ji � Pji ð15Þ
3.5. Peak demand charge

In order to avoid the need for high capacity in the macrogrid–
microgrid connection, the electricity peak demand from the grid
is reduced. This avoids charges to be levied by the system operator
for using electricity from the macrogrid during peak times. This
implemented into the model via extra constraints, see Eq. (16).
For each time interval, if the electricity load from the grid, It, is
below the agreed threshold j, normal electricity prices apply. But
if It exceeds j, the amount over the threshold ct is counted and is
charged at an extra rate in Eq. (18b). Since the objective function
Eq. (18b) is to be minimised, the ct value needs to be minimised
too, which means it should be equal to It � j if It � j is positive
or equal to 0 if It � j is negative.

ct P It � j 8t ð16Þ
3.6. Demand charge

The maximum of power demand from the grid per day is
defined as follows:

Imax P It 8t ð17Þ
3.7. Objectives

The first objective is to minimise the total daily electricity cost.
Under the RTP price scheme this includes: the operation and main-
tenance cost of the CHP generator, the electrical storage and the
thermal storage; and the cost of electricity purchased from the
grid. As mentioned earlier, capital costs are not considered.

/1 ¼
X

t

d rut=gCHP þ btIt þ rxt=gB þ lEyt þ lTHf t
� �� � ð18aÞ

When peak demand charge scheme is applied, the total daily
cost is calculated as in Eq. (18b). Below the threshold, the electric-
ity price follows the real-time electricity price while extra cost is
applied when the demand is over the agreed threshold.

/1 ¼
X

t

d rut=gCHP þ btIt þ rxt=gB þ lEyt þ lTHf t þ pct
� �� � ð18bÞ

When the demand charge is applied for the total daily cost, the
penalty based on the maximum power demand from the grid is
included in the objective function.

/1 ¼
X

t

d rut=gCHP þ btIt þ rxt=gB þ lEyt þ lTHf t
� �� �þ qImax ð18cÞ

The other objective is to minimise the total CO2 emissions,
which includes: the CO2 emissions from the use of CHP generator
and boiler, and from the conventional electricity grid.

/2 ¼
X

t

d nCHPut þ nGt It þ nBxt
� �� � ð19Þ

The above two objective functions are considered in a multi-
objective formulation as:

Min
x2Q

/1ðxÞ; /2ðxÞf g ð20Þ

where x is the vector of decision variables and Q is the space of fea-
sible solutions defined by the following constraints.



Table 2
Electricity consumption task [34].

Task Power
(kW)

Earliest
starting
time (h)

Latest
finishing
time (h)

Time
window
length (h)

Duration
(h)

1 Dish washer – 9 17 8 2
2 Washing machine – 9 12 3 1.5
3 Spin dryer 2.5 13 18 5 1
4 Cooker hob 3 8 9 1 0.5
5 Cooker oven 5 18 19 1 0.5
6 Microwave 1.7 8 9 1 0.5
7 Interior lighting 0.84 18 24 6 6
8 Laptop 0.1 18 24 6 2
9 Desktop 0.3 18 24 6 3

10 Vacuum cleaner 1.2 9 17 8 0.5
11 Fridge 0.3 0 24 – 24
12 Electrical car 3.5 18 8 14 3
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Fig. 2. Electrical capacity profiles of dish washer and washing machine.

Fig. 3. Electricity tariff and CO2 intensity of the UK (August 17th, 2013) [36,37].
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3.8. The e-constraint method with two objectives

The e-constraint method pre-defines a virtual grid in the
objective space and solves different single-objective problems
constrained to each grid cell. All Pareto-optimal solutions can
be found only if this grid is fine enough such that at most one
Pareto-optimal solution is constrained in each cell. Applying
the e-constraint to the proposed multi-objective problem
Minx2Q /1ðxÞ; /2ðxÞf g it keeps /1 as the objective function, while
/2 is considered as a constraint. A single-objective function is
obtained as:

min
x2Q

/1ðxÞ ð21Þ

s:t: /2ðxÞ 6 e2

By minimising /1 and /2 individually, the maximum and mini-
mum values of /2 are obtained, which are used to define values of

e2. For each pointM + 1: e2 ¼ /max
2 � /max

2 �/min
2

M k, whereM is the num-
ber of self-defined intervals between the maximum and minimum
values of /2 and k ¼ 0; . . . ;M.

4. Case study

The case study analysed in this paper considers a smart building
of 30 homes having the same living habits. The distributed energy
resources and their capacities are assumed to be provided, while
the technical parameters and the costs are taken from [32] and
summarised in Table 1, the operation costs of the CHP and boiler
are based on natural gas:

� one CHP generator with heat to power ratio of 1.2;
� one boiler;
� one electrical storage unit, the charge and discharge efficiencies
are assumed to be the same at 95%, and the discharge limit and
charge limit are both 10 kWe;

� one thermal storage unit, the charge and discharge efficiencies
are assumed to be the same at 98%, and the discharge limit
and charge limit are both 20 kWth;

� a grid connection (allowing import of electricity when operat-
ing parallel to the conventional grid).

� Under the peak demand charge price scheme, when the power
supplied from the conventional grid is over the agreed thresh-
old, extra 5p/kW he is charged to the electricity consumed extra
(kW h).

� Under the demand charge price scheme, the demand charge is
calculated based on the maximum power demand from the grid
on the day at the rate of 19p/kWhe.

48 time intervals of half hour each are assumed. The total heat
demand profile is provided assuming a building with floor area of
2500 m2 on a sample summer day using CHP Sizer Version 2 Soft-
ware [33]. The 12 basic electrical tasks of each home are presented
in Table 2. These tasks are available to be scheduled according to
their given time window, between the earliest starting time and
latest finishing time: their respective processing times and power
requirements are based on [34]. All tasks except the dishwasher
Table 1
Technical parameters and costs of the DERs in the case study [32].

Capacity Efficiency (%) Operation/maintenance cost

CHP 20 kWe 40 2.7p/kW h
Boiler 120 kWth 85 2.7p/kW h
Electrical storage 10 kWe h 95 0.5p/kW he

Thermal storage 20 kWth h 98 0.1p/kW hth
and the washing machine have constant power consumption rates
as shown in Table 2. The electrical profiles for the dish washer and
the washing machine are given as in Fig. 2. Finally, it is assumed
that all the homes have the same living habits and every task has
to be done once in a day.

The electricity tariff and the CO2 intensity profiles in the UK on
August 17th, 2013 are assumed for the case study and the CO2

intensity is based on gCO2/kW h electricity. As shown in Fig. 3,
the profiles of the electricity tariff and the CO2 intensity have
different peak hours in the UK and the differences between the
maximum and minimum values are 53% and 27% respectively.
The two profiles have different peaks and it may result from elec-
tricity generation of different energy sources over the day or even
the importation of the electricity from the international market.
This highlights a conflict in selecting the electricity consumption
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hours based on environmental and cost view points. The two pro-
files depend heavily on the electricity generation resources of the
specific time period. In the UK, the electricity is mainly produced
from natural gas (44%), hard coal (28%) and nuclear energy (18%)
[35].

The CO2 emission rates from the CHP and the boiler operation
are given in Table 3, and they are assumed to be constant over
the time period. The carbon footprint of the use phase for the sys-
tem is assessed considering a functional unit of 1 kW h of electrical
output and 1 kW h of thermal output, for the CHP and the boiler
respectively. A boiler efficiency of 85% is assumed in this study.
For the CHP, it is assumed as a fuel cell unit with 10 kW capacity
and 40% electrical efficiency. The ‘‘natural gas supply” impact is
referred to the extraction and distribution of the natural gas up
to the system and it is country specific, while the ‘‘direct emis-
sions” impact is referred to the specific use of the system. The car-
bon footprint is calculated by GaBi 6.0 sustainability software [35].
One point to address here is that the carbon footprint for the CHP
listed in the table is the total emissions of heat and electricity pro-
duced by the CHP based on electricity output. CHP produces heat
and power simultaneously with heat to power ratio equal to 1.2.
This results in 0.1714 gCO2/kW h of electricity produced from the
CHP. This value is much lower than the values presented in Fig. 3.
5. Computational results

Three different price schemes are applied for the case study:
RTP, peak demand charge and demand charge, as described in
the problem description (see Section 2). Under each price scheme,
the objective is to minimise the total energy cost given in Eq. (21)
with their corresponding constraints. Under RTP price scheme, the
constraints are Eqs. (1–15), (18a) and (19). Under peak demand
charge price scheme, the objective is subject to constraints Eqs.
(1–16) and (18b). While under the demand charge price scheme,
the constraints include Eqs. (1–15), (17), (18c) and (19).
5.1. Computational environment

The e-constraint method is applied for the energy consumption
management problem with the electricity tariff and the CO2 inten-
sity profiles for the case study. Both DER operation and electrical
tasks operating time are scheduled for one day, from 8 am to 8
am on the next day.

The developed MILP model is implemented using CPLEX
12.4.0.1 in GAMS 23.9 (www.gams.com) [38] on a PC with an
Intel(R) Core(TM) i7-4770 CPU, 3.40 GHz CUP and 16.0 GB of
RAM. Under RTP price scheme, there are 1132 equations, 17,815
continuous variables and 17,280 discrete variables and for each
run it takes about 0.34 s CUP time. When the peak demand price
scheme is applied, there are 1,180 equations, 17,863 continuous
variables and 17,280 discrete variables and for each run it takes
about 0.48 s CUP time. While with the demand charge price
scheme, there are 1,179 equations, 17,814 continuous variables
and 17,280 discrete variables and for each run it takes about
0.39 s CUP time.
Table 3
Carbon footprint for the CHP and the boiler.

Natural
gas supply

Direct
emissions

Total

CHP (kg CO2eq/kW h electrical output) 0.0396 0.5049 0.5445
Boiler (kg CO2eq/kW h thermal output) 0.0186 0.2923 0.3109
5.2. Pareto curves

The three price schemes are applied for the case study and Fig. 4
presents the Pareto curves for cost and CO2 emissions from a sam-
ple summer day. Three points from each curve in Fig. 4 are selected
respectively as marked with letters,

1. Point As, where the costs are the minimum;
2. Point Cs, where the kg CO2eq are the minimum;
3. Point Bs, which represents a point with trade-off between the

two conflicting objectives, they are the 15th point on the
curves;

4. Numbers 1–5 represent curves RTP, j = 60 kW, 30 kW, 15 kW
and Demand charge respectively.

For the peak demand charge price scheme, the scheduling with
each threshold value is analysed individually. All the curves follow
the same trend, CO2 emissions decrease while cost increases.
Under RTP price scheme, the difference between the maximum
and minimum values for cost and CO2 emissions is 13% and 7%
respectively. As shown, the curve represented is made of 21 points
(from A1 to C1), the curve shows a steep decrease in CO2 emissions
over the first 15 points (up to B1) with values for the CO2 dropping
from 551 to 526 kg, while the cost difference is less than £0.3. After
point B1, the CO2 emissions drop at a slower rate up to 515 kg (C1).
All five curves shown in Fig. 4 reach the same final value for the
CO2 emission (see C1–C5). This is because the results are obtained
by minimising the single objective CO2 emissions. However, when
the single objective cost is minimised, the cost values are different
(see A1–A5). The three curves under the peak demand price
scheme (j = 60 kW, 30 kW and 15 kW) are very similar and the
cost increases when the threshold value decreases, as expected.
When the thresholds are applied, the largest CO2 emissions
obtained are about 530 kg for all curves, this is much lower than
that from the RTP price scheme. This is because, under the peak
demand charge price scheme, the peak demand over the threshold
is limited by the three sample threshold values (j = 60 kW, 30 kW
and 15 kW) individually, the model spreads the electricity demand
over the day to limit the demand from the grid, rather than using
the time periods when electricity is cheap but the CO2 emissions
are high. When demand charge is applied, the resulting curve is
similar to the curve obtained for 15 kW except the first few points.
Detail energy balances of the three sample points are given in the
next sub-section.
5.3. Energy balances

Fig. 5 shows the electricity balances for the UK for points C1–C5
as labeled in Fig. 4. Since the electricity balances are very similar
Fig. 4. Pareto curves for cost and carbon footprint for the UK, August 17th, 2013.



Fig. 5. Electricity balance for point Cs.
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for all points C1–C5 under all price schemes, only one figure is pre-
sented for a generic Cs. The total kg CO2eq is the single objective,
hence the electricity demand is scheduled based on minimising
the carbon footprint of the electricity consumption of the smart
homes. In this case, the CHP operates at full capacity most of the
time because of its low CO2 intensity and the remaining demand
is satisfied by the electricity from the grid. Except for two peaks
which appear in the early morning and in the evening where the
tasks are inflexible, the electricity from the grid is bought during
the time periods when the grid CO2 intensity is low (see Fig. 3),
i.e. 14:00–15:30 and 21:30–0:00. The electrical storage is only
charged for two time periods during the day.

Fig. 6 shows the electricity balances for points A1 and B1 pre-
sented in Fig. 4. RTP is applied for these two points. For point A1,
the electricity demand is scheduled based on the electricity price
profile only to minimise the total cost. As expected, the electricity
demand peak hours appear in the early morning 4:00–7:00am
when the electricity tariff is low as shown in Fig. 3. These peak
hours move half hour early in point B1, which represents a
trade-off between the two objectives. Compared with point A1,
the CHP is providing constant electricity at full capacity not only
during the day but also during the night time 0:00–3:30 am. For
these two points, the electrical storage works more frequently than
Cs, but it still does not play an important role here.

Fig. 7 presents the electricity balances for the indicated points
in Fig. 3 under peak demand charge price scheme, for the three dif-
ferent thresholds considered. For points A2–A4, the total electricity
demands are scattered over the day, resulting in flatter profiles
compared to point A1, except for the time periods with inflexible
tasks (lights and fridges). As threshold values are applied, the
CHP generates electricity at full capacity during most of the time
of the day to avoid the peak demand penalty. While for points
B2–B4, the peak demand hours move to the period 20:00–0:00
compared to point B1, which is a period that shows a trade-off
A1

Fig. 6. Electricity balances for points A
between the two objectives, based on both the profiles of electric-
ity price and CO2 intensity (see Fig. 3). The electricity demands for
these points are similar except some small differences during the
period 8:00–16:00. Moreover, the maximum power demands from
the grid are reduced together with the total electricity demands
from the grid. These are shown in Table 4 along with all other
results for all sample points.

Electricity balances for points A5 and B5 are presented in Fig. 8
under the demand charge scheme. As shown in the figure, for point
A5, the maximum demand power from the grid is 79.7 kWwhich is
relative low compared with the other points shown in Figs. 6 and 7.
The electricity form the grid is mainly bought during the time peri-
ods with low electricity prices. When emissions are considered in
the optimisation model (point B5), the electricity demand profile
is reshaped to move the electricity buying periods to the time with
a trade-off between the two profiles of electricity prices and CO2

intensity. Again the maximum power demand from the grid is
79.7 kW. For all the sample points, the electrical storage is charged
when electricity from the grid/CHP is low and discharged when the
electricity from the grid is high. However, this is not used fre-
quently, only 2–4 time periods in the sample day. This is because
heat demand is relatively low in summer, hence the electricity out-
put from CHP is limited by this constraint, as a small amount of
electricity would be stored in the electrical storage. The usage of
the electricity stored also depends on the electricity price from
the grid. The electrical storage is not utilised if the price differences
between the time intervals cannot cover the maintenance cost and
the cost of the charge/discharge energy loss.

Fig. 9 presents the heat balance for points A1 and B1 under RTP
price scheme (when current electricity prices are considered) and
points A2 and B2 with 60 kW threshold under peak demand charge
price scheme. When the RTP price scheme is applied to a typical UK
summer day, the CHP generator does not operate constantly when
only cost is minimised. This is mainly because of the low heat
demand during summer period, where the electricity produced
from the CHP cannot provide more electricity unless the corre-
sponding heat generated can be consumed or stored in the thermal
storage. The thermal storage works here to balance the CHP gener-
ation over the day but still it cannot store heat more than its
designed capacity. Thermal storage is used to balance the heat
output from the CHP. During the time interval when there is high
electricity demand with low heat demand, the thermal storage is
charged and heat is released when the heat demand is high. In this
case, the thermal storage stores the heat during the day and dis-
charges it during the night, when the heat demand is high under
both price schemes. The thermal storage works for 8 time intervals
in the sample day for storing heat. But when CO2 emissions are
considered, CHP operates at full capacity as much as possible to
reduce the CO2 emissions. When peak demand charge price
scheme and demand charge price scheme are applied, the heat bal-
ances are for point As and Bs are similar since the heat demand is
B1

1 and B1 under RTP price scheme.



A2                                  B2

A3                                                                           B3

A4                                                              B4

Fig. 7. Electricity balances for points A2–A4 and B2–B4 under peak demand charge price scheme.
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given rather than the electricity demand. Only heat balances for
points A2 and B2 are presented here.

5.4. Total demands and peak demands over the different price schemes

Table 4 provides the maximum power demands from the grid
and the total electricity demands from the grid over the agreed
demand thresholds for the selected points in the case study, with
data profiles of the UK. As indicted from the results in the table,
the peak demand price scheme (under thresholds 60 kW, 30 kW
and 15 kW) targets at minimising total demand over the given
electricity threshold (kW h). On the other hand, the demand charge
price scheme targets at minimising the maximum power demand
from the grid (kW). Compared with the results from the RTP price
scheme, when the peak demand charge price scheme is applied,
the maximum power demand from the grid and the total electric-
ity demand from the grid over the agreed demand threshold can be
both reduced for most of the points. High threshold (i.e. 60 kW) is
good for all parameters except for cost. The maximum power
demand from the grid is reduced as well as the total demand from
the grid (including threshold) and so are the emissions. In this case,
the stress caused by the smart homes to the grid is then reduced.
When different threshold values are applied, the total costs are
affected because of the penalty, while the CO2 emissions are not
affected much. Under the peak demand price scheme, the total
electricity amount over the threshold increases when the CO2

emission constraint becomes tighter (points B and C). In this case
study, the total electricity demand of all domestic tasks is
1,056 kW h, which means the average electricity power demand
is 44 kW over the sample day. If the CHP operates at full capacity
all the time, the remaining 24 kW electricity needs to be provided
by the grid (averagely during the day). Then if the threshold is
below 24 kW, the demand from the grid will be charged by the
penalty for sure. But there are some inflexible tasks which cannot
be avoided, so penalty is even charged when the threshold is
assigned as 60 kW.

When the demand charge price scheme is applied, i.e. the max-
imum power demand from the grid is minimised rather than the
total demand from the grid over the threshold, the maximum
power demand is reduced directly to 79.7 kW for point A5, which
is even 20% lower than the maximum power obtained in point A2.
By applying this price scheme, the maximum CO2 emissions are
similar to those obtained by applying peak demand price scheme
with thresholds, which is 534.5 kg. Table 5 provides the total



Table 4
Peak demand from grid and total electricity demand for the three price schemes.

Price scheme Point Maximum power
demand from the grid (kW)

Total demand from grid
over the threshold (kW h)

Total demand from
the grid (kW h)

CO2 emissions (kg) Total cost (£)

RTP A1 176.2 – 744.4 551.3 58.3
B1 174 – 624.4 526 58.5
C1 164.2 635.7 515.2 66.6

60 kW A2 99.4 19.7 623.5 531 60.8
B2 99.4 32.9 623.8 520 64.9
C2 137.5 206.8 625.6 515.2 77.5

30 kW A3 129.4 70.5 623.8 530 65.1
B3 149.2 202.1 623.8 519.6 74
C3 149.2 377.2 623.5 515.2 85.8

15 kW A4 175.1 263.5 623.8 530.1 73.4
B4 164 324.2 623.8 520 80.8
C4 164.2 474 658 515.2 90.4

Demand charge A5 79.7 – 623.7 534.5 74.6
B5 79.7 – 623.8 521 77.1
C5 119.5 515.2 89.4

A5 B5

Fig. 8. Electricity balances for points A5 and B5 under demand charge scheme.

A1 B1

A2 B2

Fig. 9. Heat balance for points A1, A2, B1 and B2.
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Table 5
Total demands from the grid over the thresholds for the RTP and demand charge price
schemes.

Price
scheme

Point Total demand from
grid over 60 kW
(kW h)

Total demand from
grid over 30 kW
(kW h)

Total demand from
grid over 15 kW
(kW h)

RTP A1 321.2 482.7 577.8
B1 207.5 365.6 455.6
C1 263.3 415.0 498.2

Demand
charge

A5 116.8 324.0 464.9
B5 59.6 288.4 436.7
C5 233.8 401.2 496.9
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demands over the three sample thresholds under the RTP and
demand charge price scheme. Compared with the values presented
in Table 5, the total demands over the thresholds from the other
two price schemes are higher than those from the peak demand
charge price scheme individually. Under each threshold, the total
demands over the thresholds of points A1, B1, and C1, A5, B5 and
C5 do not follow a trend at all, B1 and B5 just happen to have
the lowest values for all three points.
6. Concluding remarks

An MILP model has been proposed to schedule the energy con-
sumption of smart homes within a microgrid. Both environmental
and economic minimisations are addressed in a multi-objective
optimisation with e-constraint method. The model has been imple-
mented on a case study of 30 smart homes with the same living
habits under three price schemes. Twelve domestic electrical tasks
are scheduled together with DER operation in the shared micro-
grid. Electricity tariff and CO2 emission intensity are assumed to
be available for the optimal scheduling of the smart homes. Data
profiles for a typical summer day in the UK are applied. Optimal
results with trade-off between economic cost and environmental
emissions are obtained.

When the economic cost and environmental emissions conflict
with each other, the proposed MILP optimisation model determi-
nes the Pareto-optimal curve between cost and CO2 emissions,
and it can provide valuable guidelines to decide demand side
energy management and DER operation. Also, scheduling of the
DER operations and electrical tasks depend heavily on the energy
demand patterns, which in turn are affected by seasons, the cost
and CO2 intensity profiles, and the electricity price scheme. The
proper scheduling of electrical appliances presented in this work
shows that DERs can be utilised more efficiently in a smart build-
ing. CHP systems operate constantly under the optimisation model,
meaning that installing CHP generators will be a big step towards
the reduction of CO2 emissions in the energy sector. Compared
with the RTP price scheme, maximum power demands from the
grid and total peak demands over certain thresholds can be
reduced by applying penalty price schemes, such as peak demand
charge price scheme and price demand price scheme. The results
show that the peak demand charge price scheme can reduce
demand over the agreed threshold from the grid, which means less
stress for the electricity grid. Designing the right threshold is
important, and this study shows that it should be based on the
average power demand from the grid over the day.

The proposed methodology is general and it provides a frame-
work for scheduling the energy consumption of smart homes by
considering both economic and environment aspects. Other home
energy consumption tasks can be easily added, such as air condi-
tioners, TVs, DVDs and even swimming pool heating systems.
The future work may consider more environmental impact factors
besides CO2 emissions, such as acidification potential (AP) and
primary energy (PE). Also renewable energy resources can be
added in the model to achieve higher cost and emission reduction,
including wind generator, solar panel and heat pumps.
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